[pageLogInLogOut]

#Research & Development

Vacuum insulation panels rethought - Adjustable, tailored to needs, flexible

Adaptable insulation elements can ensure that the heat transfer through the building envelope can be adjusted as required. This saves heating or cooling energy and therefore costs. Intelligent systems can regulate heat transfer according to the outside temperature and the need for heating or cooling in the interior. In the ReVaD project, the German Institutes of Textile and Fiber Research Denkendorf (DITF) and their partners are developing adaptive building envelopes that can also use concrete components as structural thermal energy storage units for temperature control in buildings.

The research project is developing adaptable insulation elements based on the Knudsen effect. The Knudsen effect describes the change in the thermal conductivity of porous structures with the prevailing gas pressure in the pore space. If there is a vacuum in the pore space, the thermal conductivity is low; if the pressure increases, the thermal conductivity also increases. In order to use the principle in an adjustable insulation element, the highest possible switching factor between the two states is required. To achieve this, the pore system and gas pressure range must be optimally matched. In the adaptable insulation panel, the pore system consists of a spacer fabric that is being developed at the DITF. A key challenge here is the compressive strength of the filling core, which must only allow minimal deformation at a surface pressure of 10 N/cm2 imprinted by a fine vacuum.

The research team at the Technology Center Knitting Technique at DITF has developed the corresponding pressure-resistant structures. Their pore size will be optimized in the next steps by inserting textured yarns into the pole thread space. The basic thermal conductivity of the structure should be increased as little as possible. With the knitted structures in the panel, a switching factor, i.e. the ratio of maximum to minimum thermal conductivity achieved, of 5 has already been demonstrated. Current work involves optimizing the spacer structures and setting up a demonstrator.

In the joint project, the Institute of Technical Thermodynamics at the German Aerospace Center (DLR) in Stuttgart is developing a thermochemical reactor component that enables precise and energy-efficient gas pressure adjustment in the vacuum insulation panel. Metal hydride-hydrogen reaction systems are used, which allow the gas pressure in the insulation panel to be set through temperature control.

Pressure-resistant spacer fabrics are used as textile filling cores for vacuum insulation elements. In the knitting process, the pore properties can be flexibly adjusted by yarn and weave selection. Photo: DITF
Pressure-resistant spacer fabrics are used as textile filling cores for vacuum insulation elements. In the knitting process, the pore properties can be flexibly adjusted by yarn and weave selection. Photo: DITF


The Institute for Building Energetics, Thermal Engineering and Energy Storage (IGTE) at the University of Stuttgart is investigating the integration possibilities of the panels in the wall composite using simulations and experiments. The thermal-energetic simulations make it possible to assess the energy-saving potential of the technology in different scenarios and under different boundary conditions. A demonstrator is used to test the adaptable thermal insulation in an application-oriented manner.

The ReVaD project (development of adaptable vacuum insulation elements for the needs-based adaptation of heat transfer in building envelopes and structures as well as the thermal activation of storage masses) is funded by the Federal Ministry of Economics and Energy as part of joint industrial research (IGF) (FKZ: 22617 N).



More News from Deutsche Institute für Textil- und Faserforschung Denkendorf

#Research & Development

More safety and comfort for protective clothing thanks to auxetic fabrics

When everyday materials are pulled, they stretch or elongate in the direction of the pull and become narrower in cross-section. We can also observe this property in two-dimensional textiles. Auxetic structures behave differently here. They have the striking property of not changing under tensile stress or even increasing their width or thickness. These properties are advantageous, for example, in protective textiles or textile filter media. The DITF are researching auxetic fabrics for various applications.

#Research & Development

Panty liners prevent bacterial vaginosis

Worldwide, almost one third of women of childbearing age suffer from bacterial vaginosis. This is when the sensitive microbiome of the vagina becomes unbalanced. Such a disorder of the vaginal flora can cause urogenital infections, abscesses on the ovaries or fallopian tubes or premature births. This significantly increases the risk of infertility in women and of contracting a sexually transmitted disease or HIV.

#Research & Development

DITF send a signal for climate protection

The German Institutes of Textile and Fiber Research Denkendorf (DITF) have successfully implemented extensive investments in photovoltaic systems at their site in Denkendorf. The systems installed on the roofs of the buildings and covered parking lots have a total installed capacity of 840 kilowatt peak (kWp). The DITF invested 1.6 million euros in this with the support of the state of Baden-Württemberg. The system was ceremonially put into operation on September 17, 2025.

#Research & Development

4.2 million Euros for research into textile recycling

Around the world, used textiles are still rarely recycled and pile up into huge mountains of waste. A recent study by the Boston Consulting Group (BCG) drew attention to this problem. However, the low recycling rate is also due to the fact that only a small percentage of used textiles are actually suitable for recycling into high-quality materials and for demanding applications. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are addressing this problem with their research.

More News on Research & Development

#Research & Development

Fraunhofer CCPE presents the “Monomaterial Design Set” – Innovative solutions for circular product design

Composite materials made from different types of plastic often extend the lifetime of products but make recycling more difficult in the circular economy. That is why Fraunhofer CCPE has developed the “Monomaterial Design Set”. This new approach helps to reduce the variety of plastics used in durable products and offers circular solutions for designers and product developers.

#Research & Development

How innovations drive BASF’s success

“Innovation has always been part of BASF’s DNA. Especially in these volatile times, it is crucial to leverage our innovative strength to develop competitive solutions that differentiate us as a company in our markets and give us a competitive edge,” said Dr. Stephan Kothrade, Member of the Board of Executive Directors of BASF and Chief Technology Officer, at the company’s Research Press Briefing held today. To achieve this, BASF implemented its “Winning Ways” strategy about a year ago with the clear goal of becoming the preferred chemical company to enable its customers’ green transformation.

#Research & Development

Small tolerances, big impact and a recyclable alternative to elastane

ITA Master's student Janne Warnecke investigated tension differences over the fabric width in the weaving process and thereby contributed to quality assurance; ITA Bachelor's student Jasmin Roos found a basis for the development of recyclable yarns and textiles. For these developments, they were awarded the Walter Reiners Foundation's Promotion and Sustainability Prizes on 27 November. Peter D. Dornier, Chairman of the Walter Reiners Foundation, presented the awards at the Aachen-Dresden-Denkendorf International Textile Conference (ADD-ITC) in Aachen, Germany.

#Associations

Young researchers recognised for cutting-edge work in recycling, fibre technology and textile mechanics

At the Aachen-Dresden-Denkendorf International Textile Conference held in Aachen at the end of November, Peter D. Dornier, Chairman of the Walter Reiners Foundation of the VDMA, honoured five successful young engineers. Promotion and sustainability prizes were awarded in the categories bachelor/project theses and diploma/master theses. Academic theses that develop solutions for resource-saving products and technologies, for example, are eligible for the sustainability awards.

Latest News

#People

Happy Holidays!

Dear reader, the year 2025 is drawing to a close. We are entering what we hope will be a peaceful holiday season, spending time with our families and taking a moment to pause and reflect. We hope we have been able to support you once again this year with relevant news and articles, and we look forward to surprising you with many innovations in the coming year. Enjoy the festive season, stay healthy, and we wish you a happy and joyful holiday season.

#Weaving

Lindauer Dornier announces leadership transition in weaving machine business

After more than ten successful years at Lindauer DORNIER GmbH, Mr Wolfgang Schöffl will leave the family-owned company at the end of the year to enter well-deserved retirement.

#Heimtextil 2026

Texpertise Focus AI: Messe Frankfurt puts Artificial Intelligence centre stage at its international textile and apparel trade fairs

Under the banner 'Texpertise Focus AI, Messe Frankfurt will place a strong emphasis on Artificial Intelligence (AI) across its international textile and apparel trade fairs from 2026 onwards, setting a future-shaping signal for the industry. The initiative highlights the responsible use of AI along the entire textile value chain, from fibre production to the point of sale. The programme will launch at Heimtextil in Frankfurt in January 2026.

#Technical Textiles

Autoneum and Polestar set new benchmarks for passenger experience and sustainability

As the global market leader in sustainable acoustic and thermal management, Autoneum is a key supplier of interior and exterior components for the highly anticipated Polestar 5 model. The successful collaboration between Autoneum and Polestar marks a significant milestone in sustainable automotive engineering: the electric grand tourer sports car features several innovations in lightweight, fully recyclable polyester-based components that ensure a superior driving experience. Polestar 5 was revealed at the IAA Mobility 2025 in Munich and is available in 24 markets.

TOP